Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2
نویسندگان
چکیده
Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map.
منابع مشابه
A simple account of cyclopean edge responses in macaque v2.
It has been shown recently that neurons in V2 respond selectively to the edges of figures defined only by disparity (cyclopean edges). These responses are orientation selective, often preferring similar orientations for cyclopean and luminance contours, suggesting that they may support a cue-invariant representation of contours. Here, we investigate the extent to which processing of purely loca...
متن کاملScene segmentation and attention in primate cortical areas V1 and V2.
The responses of many neurons in primary visual cortex are modulated by stimuli outside the classical receptive field in ways that may contribute to integrative processes like scene segmentation. To explore this issue, single-unit neuronal responses were recorded in monkey cortical areas V1 and V2 to visual stimuli containing either a figure or a background pattern over the receptive field. Fig...
متن کاملCritical spatial frequencies for illusory contour processing in early visual cortex.
Single neurons in primate V2 and cat A18 exhibit identical orientation tuning for sinewave grating and illusory contour stimuli. This cue invariance is also manifested in similar orientation maps to these stimuli, but in V1/A17 the illusory contour maps appear reversed. We hypothesized that this map reversal depends upon the spatial frequencies of the inducers in the illusory contours, relative...
متن کاملSurround suppression supports second-order feature encoding by macaque V1 and V2 neurons
Single neurons in areas V1 and V2 of macaque visual cortex respond selectively to luminance-modulated stimuli. These responses are often influenced by context, for example when stimuli extend outside the classical receptive field (CRF). These contextual phenomena, observed in many sensory areas, reflect a fundamental cortical computation and may inform perception by signaling second-order visua...
متن کاملNeuronal responses to texture-defined form in macaque visual area V2.
Human and macaque observers can detect and discriminate visual forms defined by differences in texture. The neurophysiological correlates of visual texture perception are not well understood and have not been studied extensively at the single-neuron level in the primate brain. We used a novel family of texture patterns to measure the selectivity of neurons in extrastriate cortical area V2 of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014